top of page
Search

Killing My Darlings, the Third time

  • Writer: Kalle Lintinen
    Kalle Lintinen
  • Feb 28
  • 4 min read

 A year and a half ago I wrote a post titled “Killing My Darlings”. In it, I rejected the initial concept of the hydrogen molecule, because it wasn’t based on any concrete interaction but was rather the simplest idea I had at the time to twist a string over a spherical surface. In the post I introduced a bent helix that I proposed was the structure of a hydrogen atom, or at least half a hydrogen molecule.

 

Ever since that time I’ve worked under the assumption that the elementary particles of energy (kaus) at the level of a single hydrogen molecule can be described as a helix with just two turns bent around itself by 360 degrees. I did reserve a more complex shape for electrons and protons (I’ve removed the video of a proton model in the post to add videos to newer posts: I’m always struggling with the file size limitations).

 

However, I haven’t tried to build the theory of reflection of kaus around this ‘fuzzier’ electron model, as I always thought that it would be just too tricky to handle. Rather, I thought that simple reflections of kaus can explain the simpler saint Hannes knot model that I thought applied both to a single hydrogen atom and to the supramolecular alignment of molecules in gases and liquids.

 

But now, after banging my head against the wall for almost a year trying to explain the saint Hannes knot with reflection, I must admit that I’ve been probably wrong. You see, the model assumes that there is no force keeping the particles bound to each other, with only reflection explaining the orbiting of the particles in the loose helix. However, the closer I got to mathematical precision on the reflection model, the less plausible this loose model of reflection became. And funnily the last straw was the discovery of the radius of the orbital of kaus. Once I was no longer zooming into a couple of reflections, I realized that the model would inevitably lead to a conical fanning out of the kaus by reflections, unless there was some force keeping them together.

 

And then it hit me: the model was still accurate, but only at the level of molecules! This might sound confusing but is rather simple, really. First of all, it seems that reflections of kaus must be at least quasi-two-dimensional to prevent their conical spreading, instead of an ordered reflection around a single center. This can probably be realized in the electron model, but not the saint Hannes model. Secondly, while I can’t introduce forces to individual kaus, I can do that, if my reflection model describes the movement of hydrogen molecules (H2) instead of kaus. In a rather comical way, this allows me to explore reflection, but only a manageable chunk of it at a time.

 

This means I have to backtrack almost exactly a year to the post “A 3D Knot of Dots

But this time I cannot consider the spheres to be independent of each other. Rather, this time the above knotted orbital consists of non-spherical molecules, which are simplified to two interconnected spheres. Regardless of whether such a symmetrically non-spherical shape exists, it is irrelevant for the analysis. The more important aspect is that it can illustrate both the rotation of a molecule and the reflections between molecules.

 

When the molecule is depicted with two spheres, it is easier to illustrate the impact between two neighboring molecules and its influence on their rotation.

 

The unfortunate thing about returning to not dealing with actual elementary particles of energy is that I cannot rely as much on pure mathematics. In this model I can much more easily hypothesize properties of the molecules that cannot actually take place. To prevent this, I begin with the assumption that the only change in the molecule between reflections can be rotation.

 

I’m expecting to be wrong quite a bit until I get the hang of this ‘zoomed out’ model. But hopefully this approach will produce results relatively fast. If not, I might just consider trying to embrace the electron model, which should still be compatible with the reflection of kaus.

 

Lasty, all of this raises the questions “how wrong have I been?” and “has my work during the last year been useless?”. The short answer to the first question is “I don’t know”. The problem seems to be that I’ve tried to mix two true statements into a false one. This then leads to the answer to the second question: “the last year has been extremely useful”. I’ve found that the only way to progress is to make hypotheses that go beyond the data available. After this, these hypotheses are picked apart and if at any point they lead to impossible conclusions, they need to be revisited and corrected.

 

To find an analogy, I’ve found that the saint Hannes knot model depicted above is more like the special theory of relativity, which Einstein came up in 1905, but the true Theory of Everything, which actually begins with elementary particles of energy, is more like the general theory of relativity, which took Einstein ten more years to formulate.

 

So, I’ve decided to postpone the true quest for the theory of everything and only focus on reflective gravity. This is something that is solvable in a reasonable timeframe. Possibly even within days, or weeks. But at least within a couple of months.

 

P.S. The title of this post refers to killing my darlings for the third time. This post is the second time. And the reason I didn’t want to talk about this in the main post is that the topic, which was relevant over a year ago, is already blurry to me and would take too even for me to figure out where I was at that point.

 

 

 
 
 

Comments


bottom of page